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Abstract. We consider an iterated Lasso approach for variable selection and

estimation in sparse, high-dimensional logistic regression models. In this

approach, we use the Lasso (Tibshirani 1996) to obtain an initial estimator

and reduce the dimension of the model. We then use the Lasso as the initial

estimator in the adaptive Lasso (Zou 2006) to obtain the final selection and

estimation results. We provide conditions under which this two-step approach

possesses asymptotic oracle selection and estimation properties. One important

aspect of our results is that the total number of covariates can be larger than

the sample size. Simulation studies indicate that the iterated Lasso has superior

performance in variable selection relative to the standard Lasso. A data example

is used to illustrate the proposed approach.

Key Words and Phrases. High-dimensional data; Oracle property; Penalized

regression; Sparse models; Variable selection.

Short title. Iterated Lasso Logistic Regression

1 Introduction

The logistic regression is widely used in biomedical and epidemiological studies to identify

risk factors associated with disease. Traditional studies usually involve a small number

of potential risk factors, or covariates. Theoretical properties of the maximum likelihood
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estimator in the logistic regression models in low-dimensional settings are well established,

and application of this model in such settings is facilitated by many widely available computer

programs. In recent years, more and more high-dimensional genetic and genomic data are

being generated using microarray technologies in studies that attempt to find genetic risk

factors for disease and clinical outcomes. With such data, the number of covariates is larger

than the sample size. The standard maximum likelihood method for logistic regression is

not applicable.

Recently, there has been much work on the penalized methods for high-dimensional

models, notably, considerable progress has been made in understanding the statistical

properties of the Lasso (Tibshirani 1996) in both small p and large p settings, where p is the

number of covariates. When p is fixed, Knight and Fu (2001) showed that, under appropriate

conditions, the Lasso is consistent for estimating the regression parameter and its limiting

distributions can have positive probability mass at 0 when the true value of the parameter is

zero. Meinshausen and Bühlmann (2006) and Zhao and Yu (2006) showed that under a strong

irrepresentable condition the Lasso is consistent for variable selection even when the number

of variables p is as large as exp(na) for some 0 < a < 1. Zhang and Huang (2008) studied

the behavior of the Lasso regarding its selection properties if the irrepresentable condition

is relaxed in linear regression models. They showed that under appropriate conditions on

the sparseness of the model and the design matrix, the Lasso estimator is consistent in the

`2 norm, and with high probability, all important variables are selected by the Lasso. In

particular, under a sparse Riesz condition on the correlation of design variables, they showed

that the Lasso selects a model of the right order of dimensionality, controls the bias of the

selected model at a level determined by the contributions of small regression coefficients and

threshold bias, and selects all coefficients of greater order than the bias of the selected model.

An important aspect of the results of Zhang and Huang (2008) is that the logarithm of the

number of variables can be of the same order as the sample size for certain random dependent

designs. Related results have also been obtained by Meinshausen and Yu (2008). Van de

Geer (2008) studied the Lasso in high-dimensional generalized linear models. However, her

work focused on the prediction aspect of the Lasso, but did not address the question of

variable selection. All the aforementioned work, except Van de Geer (2008), were carried

out in the context of linear regression models.

While the Lasso has excellent properties in dimensional reduction and estimation, it is

in general not selection consistent even in the low-dimensional case (Knight and Fu 2001;

Leng, Lin and Wahba 2004). The adaptive Lasso proposed by Zou (2006) aims to improve

the performance of the Lasso. The adaptive Lasso relies on an initial consistent estimator.

When the number of covariates p is fixed, Zou (2006) proved that the adaptive Lasso has the

asymptotic oracle property in linear regression. Huang, Ma and Zhang (2006) considered
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the case when p À n, where n is the sample size. They showed that the adaptive Lasso

has the oracle property under an adaptive irrepresentable and other regularity conditions,

provided a initial consistent estimator is available. This result allows p = O(exp(na)) for

some constant 0 < a < 1, where a depends on the regularity conditions. Zou and Li (2008)

studied a one-step approach in nonconcave penalized likelihood methods in models with fixed

p. This approach is closely related to the adaptive Lasso.

We study the properties of a special form of the adaptive Lasso for variable selection

and estimation in logistic regression in “large p, small n” settings. This approach was

also suggested by Bühlmann and Meier (2008) in the context of linear regression. In this

approach, we first use the Lasso to obtain an initial estimator and reduce the dimension of

the model. We then use the Lasso estimates to form the weights in the `1 penalty in the

adaptive Lasso in the second step to select the final set of variables. In the second step,

variables with larger coefficients will receive smaller penalties, which leads to the selection

consistency. Since the Lasso is used as the initial estimator in the adaptive Lasso, we call

this approach the iterated Lasso to distinguish it from the adaptive Lasso that uses different

initial estimators.

We show that, under appropriate conditions, the Lasso is consistent even when p > n, and

the iterated Lasso possesses an oracle property in the sense of Fan and Li (2001), it correctly

selects important covariates with high probability and estimates the nonzero coefficients

with the same asymptotic distribution as though the true model were known in advance.

Our results are among the first in its kind that establish the consistency of the Lasso and

the oracle property of the iterated Lasso in logistic regression in sparse, high-dimensional

settings. They provide theoretical justifications for using the Lasso to generate the initial

estimates of the coefficients, and then use them in the adaptive Lasso for logistic regression.

The computational cost of the iterated Lasso is about twice that of the Lasso. Therefore, it

is also computationally feasible for high-dimensional logistic regression models.

The rest of the paper is organized as follows. The iterated Lasso estimator is defined

in Section 2. The results on the Lasso and the iterated Lasso in high-dimensional logistic

regression are described in Section 3. In Section 4, we use simulation to evaluate the iterated

Lasso in logistic regression and demonstrate it on a real data example. Concluding remarks

are given in Section 5. Proofs are provided in the Appendix.

2 The iterated Lasso for logistic regression

Suppose that Y1, . . . , Yn are independent binary response variables that take a value of 0 or

1, and that x1, . . . , xn are corresponding covariates with xi = (1, xi1, . . . , xip)
′, 1 ≤ i ≤ n.
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Define π(t) = et/(1 + et). The logistic regression model assumes that

P(Yi = 1|xi) = π(x′iβ) =
exp(x′iβ)

1 + exp(x′iβ)
, 1 ≤ i ≤ n,

where β = (α, β1, . . . , βp)
′ is a is a (p + 1)-dimensional vector of coefficients including the

intercept. The negative log-likelihood function

`n(β) = −
n∑

i=1

{
Yi log π(x′iβ) + (1− Yi) log[1− π(x′iβ)]

}
.

Let

L1(β; λ1) = `n(β) + λ1

p∑
j=1

|βj|,

where only the regression coefficients β1, . . . , βp are penalized, but not the intercept. The

Lasso estimator

β̃n(λ1) = arg min
β

Ln1(β; λ1). (1)

where λ1 ≥ 0 is a penalty parameter.

Consider the adaptive Lasso criterion

L2(β; λ2) = `n(β) + λ2

p∑
j=1

wj|βj|, (2)

where wj is the weight for βj. Here λ2 ≥ 0 is the penalty level and will be selected

independently of λ1. In general, the weights wj can be data-dependent. The basic

requirement for the weights is that the wj should be relatively large if the true value of

βj = 0 and wnj should be relatively small if βj 6= 0. In reality, the values of the regression

coefficients are not known in advance. However, a good initial estimator will provide this

information. A convenient way to determine wj is to use an initial estimator. Here we use

the Lasso estimator β̃n and let

wj = |β̃nj|−1, j = 1, . . . , p. (3)

The iterated Lasso estimator

β̂n(λ2) = arg min
β

L2(β, λ2).

When β̃nj = 0, we define wj = ∞. Then to minimize (2), we must have βj = 0. Thus,

if a variable is not selected by the Lasso, it will also not be selected by the adaptive Lasso.

In Theorem 1 below, we show that the Lasso will select all the nonzero coefficients if they

are not too small, in the sense that the the smallest nonzero coefficient does not converge

to zero too fast. This means that the Lasso over selects with high probability. Therefore,

the iterated Lasso can be regarded as a way to correct the problem of over selection by the

Lasso.
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3 Theoretical results

In this section, we study the theoretical properties of the iterated Lasso estimators in sparse,

high-dimensional cases in which p ≥ n. First, we then show that the Lasso estimator is

consistent. We then show that the adaptive Lasso possesses an oracle property, provided

that an initial consistent estimator is available. Together, these results imply that the

iterated Lasso has the oracle property.

3.1 Consistency of the Lasso

The adaptive Lasso estimator is defined based on an initial estimator. In particular, for the

adaptive Lasso to have the oracle property, a key requirement is that the initial estimator that

is consistent at zero. In the low-dimensional settings, the maximum likelihood estimator for

the logistic regression model is consistent under certain regularity conditions. In this case, we

can use the maximum likelihood estimator as the initial estimators for the weights. However,

when pn > n, which is the case in many microarray gene expression studies, the maximum

likelihood estimator is no longer feasible. In this section, we show that the logistic Lasso

estimator is consistent under the sparse Riesz condition (SRC) formulated in Zhang and

Huang (2008) and certain other conditions.

Let the true parameter value be β0 = (β00, β01, . . . , β0pn)′. Here we write pn to indicate

that p is allowed to diverge with n. Most quantities and data objects in our discussion are

functions of n, but this dependence on n is often made implicit, especially for n-vectors and

matrices with n rows. We normalize the covariates so that

1

n

n∑
i=1

x2
ij = 1, j = 1, . . . , pn.

Let xj = (x1j, . . . , xnj)
′ be the j-th covariate vector and let X = (x0, x1, . . . , xpn), where x0

is a n× 1 column vector of 1’s. For any A ⊆ {1, . . . , pn}, let

XA = (x0, xj, j ∈ A), CA = X ′
AXA/n.

Define

cmin(m) = min
|A|=m

min
‖ν‖=1

ν ′CAν, cmax(m) = max
|A|=m

max
‖ν‖=1

ν ′CAν,

where ‖ · ‖ denote the `2 norm. The covariate matrix X satisfies the SRC with rank q and

spectrum bounds 0 < c∗ < c∗ < ∞ if

c∗ ≤ cmin(q) ≤ cmax(q) ≤ c∗, ∀ A with |A| = q and v ∈ IRq. (4)

Since ‖XAν‖2/n = ν ′CAν, all the eigenvalues of CA are inside the interval [c∗, c∗] under (4)

when the size of A is no greater than q∗. Let ρn be the largest eigenvalue of X ′X/n.
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Denote the set of nonzero coefficients by Ao = {j : β0j 6= 0, 1 ≤ j ≤ pn}. Let kn = |Ao| be

the number of nonzero coefficients and let mn = pn − kn be the number of zero coefficients.

Let bn2 = max{|β0j| : j ∈ Ao} be the absolute largest value of the nonzero coefficients.

Consider the following conditions.

(A1) (a) Bounded parameters: there exists a 0 < b2 < ∞ such that bn2 < b2; (b) Bounded

covariates: there exists a constant M > 0 such that max1≤i≤n max1≤j≤pn |xij| < M .

(A2) (SRC) There exists a constant M1 > 0, such that with qn ≡ M1n
2/λ2

n1, the covariate

matrix X satisfies the SRC with rank qn and spectrum bounds {c∗, c∗}.
Condition (A1a) requires that the regression coefficients do not diverge to infinity.

Condition (A1b) requires that the covariates be bounded. This condition can probably

be weakened but it facilitates the technical details in the proofs.

Under (A1), there exists a constant 0 < ε0 < 1/2 such that

ε0 ≤ π(x′iβ)(1− π(x′iβ)) ≤ 1− ε0, 1 ≤ i ≤ n. (5)

Let γ = c2
∗ε

2
0. Define

hn =
qn log pn

γn
+

2λ2
n1(|Ao|+ 1)

γn2
. (6)

Theorem 1 Suppose that for a finite constant ρ > 0, ρn ≤ ρ for all n sufficiently large.

(i) Let Ã = {j : β̃j 6= 0}. Then, with probability one,

|Ã| ≤ ρn2/λ2
n1.

(ii) Additionally, suppose that (A1)-(A2) hold. If hn(dn log n)1/2 → 0, then

‖β̃n − β0‖2 = Op(hn).

Part (i) of this theorem provides an upper bound of the dimension of the model selected

by the Lasso in terms of ρ, n and λn1. It says that the dimension of the model selected by

the Lasso is bounded by ρn2/λ2
n1. In particular, the number of nonzero estimates is inversely

proportional to λ2
n1. Part (ii) shows that the rate of convergence of the Lasso estimator

rn = h
−1/2
n .

3.2 An oracle property of the iterated Lasso

We study the property of the iterated Lasso by considering the general case of the adaptive

Lasso. The following definition describes a key requirement on the initial estimator for the

adaptive Lasso.
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Definition 1 Let bn1 = min{|β0j| : j ∈ Ao} the absolute smallest value of the nonzero

coefficient. An estimator β̃n is rn-consistent at zero if there exists a constant ξ0 > 0 such

that P(minj∈Ao |β̃nj| ≥ ξ0 bn1) → 0 and rn maxj 6∈Ao,j≥1 |β̃nj| = Op(1), where rn → ∞ as

n →∞.

In general, rn-consistency at zero is different from the usual rn-consistency. However, rn-

consistency at zero follows from the usual rn-consistency if the smallest nonzero coefficient

satisfies

bn1/h
1/2
n →∞. (7)

When the number of nonzero coefficients is fixed, this is always satisfied. In particular,

under (7) and the conditions in Theorem 1, the Lasso estimator is rn-consistent at zero with

rn = h
−1/2
n .

Consider the following assumption.

(A3) (a) The initial estimator β̃n is rn-consistent at zero; (b) The constants

{kn,mn, bn1, rn, λn2} satisfy

√
log kn

bn1

√
n

+

√
n log mn

λn2 rn

+

√
knλn2

nbn1

→ 0, (8)

where we write λn1 for λ1 and λn2 for λn2 to indicate their dependence on n.

Condition (A3b) put restrictions on the numbers of covariates with zero and nonzero

coefficients, the penalty parameter, and the smallest non-zero coefficient. It is worth noting

that only the logarithm of mn enters the equation. This implies that our results are applicable

to models whose dimension is larger than n.

We now examine condition (8) in more detail. The first term in (8) requires that

bn1/
√

log(kn)/n → ∞. In other words, for the adaptive Lasso to be able to distinguish

nonzero coefficients from zero coefficients, we require that the nonzero coefficients be bigger

than
√

log(kn)/n. If the number of nonzero coefficients is fixed, this is automatically satisfied.

The second term requires that λn2 cannot be too small and that the rate of convergence of the

initial estimator at zero should not be two slow. For the given rate of convergence rn of the

initial estimator, the penalty level needed for consistent selection is related to the logarithm

of the number of zero coefficients. The third them requires that λn2 must be smaller than

nbn1/
√

kn. This requirement is related to the bias introduced in the penalty term. For the

bias due to penalty to be asymptotically negligible, more stringent condition is needed. See

Theorem 3 below.

There are two special cases where (8) is especially simple: (1) When pn is fixed, then bn1 is

bounded away from zero. In this case, (8) is satisfied if λn2/n → 0 and λn2rn/n
1/2 →∞. (2)

The number of nonzero coefficients kn is fixed, but pn is allowed to diverge with n. Then bn1

is bounded away from zero. (A3b) is satisfied if λn2/n → 0 and log pn = o(1)(λn2rn/n
1/2)2.
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Therefore, depending on rn and λ2n, the total number of covariates can be as large as exp(na)

for some 0 < a < 1.

For any vector u = (u1, u2, . . .)
′, define sgn(u) = (sgn(u1), sgn(u2), . . .)

′, where sgn(u1) =

−1, 0 or 1 if u1 < 0, = 0 or 1. With a slight abuse of notation, we define sgn(β00) =

sgn(β̂n0) = 0. That is, the signs of the intercept β00 and its estimate β̂n0 are defined to be

0, although the intercept itself may not be zero.

Theorem 2 Suppose that (A1)-(A3) hold and that the matrix CAo is strictly positive definite.

Then

P
(
sgn(β̂n) = sgn(β0)

) → 1.

Thus under the conditions of Theorem 2, the adaptive Lasso can correctly select nonzero

coefficients with probability converging to one.

Denote β0A0 = (β00, β0j, j ∈ Ao)′, β̂nA0 = (β̂n0, β̂nj, j ∈ Ao)′ and xiAo = (1, xij, j ∈ Ao)′.

Let ε = (ε1, . . . , εn)′, where εi = Yi − π(x′iβ0), 1 ≤ i ≤ n, and let the diagonal matrix D =

diag(d1, . . . , dn), where di = π(x′iβ0)(1− π(x′iβ0)), 1 ≤ i ≤ n. Denote ΣAo = n−1X ′
AoDXAo .

Theorem 3 Suppose that (A1) to (A3) hold. Let s2
n = σ2α′nΣ−1

Aoαn for any kn× 1 vector αn

satisfying ‖αn‖2 ≤ 1. If k
1/2
n λn2/n

1/2 → 0,

n1/2s−1
n α′n(β̂nAo − β0Ao) = n−1/2s−1

n

n∑
i=1

εiα
′
nΣ−1

AoxiAo + op(1) →D N(0, 1),

where op(1) is a term that converges to zero in probability uniformly with respect to αn.

This theorem implies that the adaptive Lasso estimators of the non-zero parameters have

the same asymptotic distribution that they would have if the zero coefficients were known

in advance.

Under (7) and the conditions of Theorems 1 and 2, the iterated Lasso estimator is selection

consistent. In addition, Theorem 3 implies that the iterated Lasso estimator is asymptotically

efficient. Therefore, the iterated Lasso estimator has the asymptotic oracle property.

4 Computation and numerical studies

4.1 Computational Algorithm

The proposed approach involves computing the Lasso and adaptive Lasso estimates. One

possibility is to use the modified LARS algorithm (Efron et al. 2004; Park and Hastie 2007).
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As an alternative, we consider the gradient boosting approach (Kim and Kim 2004). First,

we note that the Lasso estimator defined as

β̂ = arg min{`n(β) + λ
∑

j

|βj|}

is equivalent to

β̂ = arg min `n(β)

subject to
∑

j |βj| ≤ u, with a one-to-one correspondence between λ and u. The above

constraint estimate can be computed with the following iterative algorithm.

1. Initialize β̂ = 0 and s = 0.

2. With the current estimate of β̂, compute ψ(β) = ∂`n(β)/∂β. Denote the kth component

of ψ as ψk.

3. Find k∗ that minimizes min(ψk(β),−ψk(β)). If ψk∗(β) = 0, then stop the iteration.

4. Otherwise denote r = −sign(ψk∗(β)). Find π̂ = argminπ∈[0,1]`n((1−π)β+π×u×rηk∗),

where ηk∗ has the k∗th element equals to 1 and the rest equal to 0.

5. Let βk = (1− π̂)βk for k 6= k∗ and βk∗ = (1− π̂)βk∗ + ruπ̂. Let s = s + 1.

6. Repeat steps 2–5 until convergence or a fixed number of iterations S has been reached.

The β at convergence is the Lasso estimate.

The gradient boosting algorithm is less sensitive to the number of covariates, and can be

more efficient than alternatives (Kim and Kim 2004). The adaptive Lasso estimator can also

be computed using this algorithm by a simple rescaling of the covariates.

The proposed approach involves tuning parameters u1 and u2 corresponding to λ1 and

λ2, respectively, which determines the sparsity of the estimates. In this study, we use V-fold

cross validation to select u1 and u2.

4.2 Simulation Study

We conduct simulation studies to assess the finite sample performance of the iterated Lasso.

We are interested in comparing performance of the proposed iterated Lasso method with the

standard Lasso.

In the simulations, we generate n iid samples, with n/2 having Y = 1 (cases) and

the rest Y = 0 (controls), and p = 500 covariates for each sample. Covariates for cases

and controls are generated as multivariate normal distributed, with pair-wise correlation
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coefficient between the ith and jth covariates ρ|i−j|. We set the marginal variances for all

covariates equal to 1. The means for all covariates of controls are 0. The means for the

first k = 20 covariates of cases are µ, and the rest 0. The simulated scenario corresponds

to the logistic regression model, with the first k = 20 covariates having nonzero coefficients.

We consider the following simulation parameters: n = 100 or 200, ρ = 0, (no correlation)

0.3 (weak correlation) and 0.5 (strong correlation), and µ = 1.0 (strong signal) and 0.5

(weak signal). A total of 12 models are generated by considering different combinations of

simulation parameters. We simulate 100 datasets under each simulation scenario.

We use V-fold cross validation to select the optimal tunings with V = 5. Our theoretical

investigations show that the requirements for λ1 and λ2 are different. Therefore, the penalty

parameters will be determined independently via 5-fold cross validation.

In Table 1, we show the medians (of 100 replicates) of the number of selected covariates

and number of true positives using the Lasso and iterated Lasso approaches. We see that

under all simulated scenarios, the iterated Lasso has smaller false positive rates. It selects

a model that is closer to the true model and that it has smaller false positive rates and has

similar or only slightly larger false negative rates.

4.3 Analysis of Breast Cancer Study

Breast cancer is the second leading cause of deaths from cancer among women in the

United States. Despite major progresses in breast cancer treatment, the ability to predict

the metastatic behavior of tumor remains limited. The Breast Cancer study was first

reported in van’t Veer et al. (2002). 97 lymph node-negative breast cancer patients

55 years old or younger participated in this study. Among them, 46 developed distant

metastases within 5 years (metastatic outcome coded as 1) and 51 remained metastases free

for at least 5 years (metastatic outcome coded as 0). The dataset is publicly available at

http://www.rii.com/publications/2002/vantveer.html.

We first pre-process gene expression data as follows: (1) Remove genes with more than

30% missing measurements. (2) Fill in missing gene expression measurements with median

values across samples. (3) Normalize gene expressions to have zero means and unit variances.

(4) Compute the simple correlation coefficients of gene expressions with the binary outcome.

(5) Select the 500 genes with the largest absolute values of correlation coefficients.

We analyze the breast cancer data using both the Lasso and the proposed iterated

approach. Optimal tunings are selecting using the 5-fold cross validation. Since with

practical data, it is not clear which are the true positives, we use the leave-one-out cross

validation (LOOCV) to evaluate the predictive power of the two approaches. If an approach

can properly select genes with predictive power, then the LOOCV prediction error should

be small.
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We show the estimation results in Table 2. With the Lasso, 42 genes are selected. With

the iterated Lasso, only 22 genes are selected. Estimates (if nonzero) under both approaches

have the same signs, which suggests similar biological conclusions. However the estimates can

be different. With the Lasso, 14 subjects cannot be properly predicted. With the proposed

approach, 14 subjects cannot be properly predicted. So the same predictive performance

is achieved with both approaches. However, the findings from the iterated Lasso provide a

more focused set of genes for further investigation of their biological functions.

5 Concluding remarks

A key requirement for the iterative Lasso to possess the oracle property is that the initial

estimator is consistent and does not miss important variables with high probability. In

low-dimensional settings, finding an initial consistent estimator is relatively easy and can

be achieved by many well established approaches such as the maximum likelihood method.

However, in high-dimensional settings, finding an initial consistent estimator is difficult.

Under the conditions stated in Theorem 1, the Lasso is shown to be consistent and selects

all the important variables as long as their corresponding coefficients are not too small. Thus

the Lasso can be used as the initial estimator in the adaptive Lasso to achieve asymptotic

oracle efficiency. Our simulation results show that the iterated Lasso performs well in terms

variable selection. Therefore, the iterated Lasso is a useful approach for variable selection

and estimation in sparse, high-dimensional logistic regression.

Our theoretical results on the Lasso (Theorem 1) depend on the form of the logistic

likelihood. However, the results on the adaptive Lasso (Theorems 2 and 3) do not require

logistic model assumption, provided that a consistent initial estimator is available. It is clear

that the iterated Lasso can also be applied to general regression problems, including other

generalized linear model, Cox regression and robust regression. Further work is needed to

verify that similar theoretical results still hold generally in these problems.

6 Appendix: Proofs

In this section, we prove the results stated in Section 3. For simplicity, we will drop the

subscript n from certain quantities in many instances. For example, we will simply write p

for pn, λ1 for λn1 etc. We first prove Theorems 2 and 3, then we prove Theorem 1.
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6.1 Proof of Theorems 2 and 3

Denote the log-likelihood function by `(y, θ) = y log π(θ) + (1 − y) log(1 − π(θ)). Simple

calculation shows that the first and second derivatives of ` with respect to θ are ˙̀(y, θ) =

−y + π(θ) and ῭(y, θ) = π(θ)(1− π(θ)).

Proof of Theorem 2. By the Karush-Kunh-Tucker conditions, β̂ = (β̂0, β̂1, . . . , β̂p)
′ is the

unique adaptive Lasso estimator if and only if

{ ∑n
i=1

˙̀
(
Yi, x

′
iβ̂

)
xij = λ2wjsgn(β̂j), j = 0 or β̂j 6= 0,∣∣ ∑n

i=1
˙̀
(
Yi, x

′
iβ̂

)
xij

∣∣ ≤ λ2wnj β̂j = 0, j ≥ 1.
(9)

Let β0Ao = (β00, β0j, j ∈ Ao), β̂Ao = (β̂0, β̂j, j ∈ Ao) and xiAo = (1, xij, j ∈ Ao)′. We write

sgn(β̂Ao) = sgn(β0Ao) to mean that the signs are equal component wise with the convention

that sgn(β̂0) = sgn(β00) ≡ 0. If sgn(β̂Ao) = sgn(βAo), then (9) holds for β̂ = (β̂′Ao ,0′)′. Thus,

since x′iβ̂ = x′iAoβ̂Ao for this β̂ and xj are linearly independent,

sgn(β̂) = sgn(β0) if





sgn(β̂j) = sgn(β0j), j ∈ Ao,∣∣∣∑n
i=1

˙̀
(
Yi, x

′
iAo β̂Ao

)
xij

∣∣∣ ≤ λ2wj, ∀j 6∈ Ao, j ≥ 1,
∑n

i=1
˙̀
(
Yi, x

′
iAoβ̂Ao

)
= 0.

(10)

where β̂Ao is the solution to

n∑
i=1

˙̀
(
Yi, x

′
iAoβ̂Ao

)
xij = −λ2wj sgn(β0j), j = 0 and j ∈ Ao.

To prove the theorem, it suffices to prove (10). We can write (10) as

sgn(β̂) = sgn(β0) if





sgn(β0j)(β0j − β̂j) < |β0j|,∀j ∈ Ao

∣∣∑n
i=1

˙̀
(
Yi, x

′
iAo β̂Ao

)
xij

∣∣ ≤ λ2wj, ∀j 6∈ Ao, j ≥ 1,
∑n

i=1
˙̀
(
Yi, x

′
iAoβ̂Ao

)
= 0.

(11)

Define

Qn1(βAo) =
1

2
(βAo − β0Ao)′X ′

1DX1(βAo − β0Ao)− ε′X1(βAo − β0Ao) + λ2

∑
j∈Ao

wnjsgn(β0j)βj,

where X1 ≡ XAo = (x0, xj, j ∈ Ao) and recall ε = (ε1, . . . , εn)′. Let β∗Ao = arg min Qn1(βAo).

Denote ξ1 = (0, wnjsgn(β0j), j ∈ Ao)′. Then

β∗Ao − β0Ao = (X1DX1)
−1(X ′

1ε− λ2ξ1). (12)

12



Thus we have

‖β∗Ao − β0Ao‖2 = Op

(
kn

n
+

λ2
2kn

n2b2
n1

)
. (13)

Following Huang, Ma, and Zhang (2007), it can be shown that, with probability

converging to one,

{
|β0j − β∗j | < 0.5|β0j|, ∀j ∈ Ao

∣∣ ∑n
i=1[εi − dix

′
iAo(β∗Ao − βAo)]xij

∣∣ ≤ 1
4
λ2wj, ∀j 6∈ Ao, j ≥ 1.

(14)

Since εi = ˙̀(Yi, x
′
iAoβ0Ao), by the Taylor expansion, we have

∣∣
n∑

i=1

˙̀(Yi, xiAoβ∗Ao)xij −
n∑

i=1

[εi + dix
′
iAo(β∗Ao − β0Ao)]xij

∣∣ ≤ M1c
∗‖β∗Ao − β0Ao‖2

2.

This inequality, (14) and (13) imply that, with high probability,




|β0j − β∗j | < 0.5|β0j|, ∀j ∈ Ao

∣∣∑n
i=1

˙̀(Yi, x
′
iAoβ∗Ao)xij

∣∣ ≤ 0.5λ2wj, ∀j 6∈ Ao.

Therefore, by (11), to prove (10), it suffices to show that with probability converging to 1,




|β̂Ao − β∗Ao | < 0.5|β0j|, ∀j ∈ Ao

1
n

∣∣∑n
i=1

˙̀(Yi, x
′
iAo β̂Ao)xij −

∑n
i=1

˙̀(Yi, x
′
iAoβ∗Ao)xij

∣∣ ≤ 0.5λ2wj, ∀j 6∈ Ao.
(15)

By Lemma 4 below, we can show that

‖β̂Ao − β∗Ao‖2 = op

(kn

n
+

λ2
2kn

n2b2
n1

)
. (16)

By (A1b), we have

∣∣
n∑

i=1

[ ˙̀(Yi, x
′
iAoβ̂Ao)− ˙̀(Yi, x

′
iAoβ∗Ao)]xij

∣∣ ≤ O(1)
n∑

i=1

|x′iAo(β̂Ao − β∗Ao)||xij|

≤ O(1)M1

n∑
i=1

‖xiAo‖‖β̂Ao − β∗Ao‖

≤ O(1)nM2
1 k1/2

n ‖β̂Ao − β∗Ao‖. (17)

Therefore, (15) follows from (16), (17), and (A3b). ¤

Proof of Theorem 3. Theorem 3 follows from (12), (13), (16), the assumption that√
knλ2/

√
n → 0 and the Lindeberg-Feller central limit theorem.

13



6.2 Proof of Theorem 1

Proof of Theorem 3, part (i). By the KKT, a necessary and sufficient condition for

β̃ = (β̃0, β̃1, . . . , β̃p)
′ to be the Lasso solution is





∑n
i=1[Yi − π(x′iβ̃)] = 0,∑n
i=1[Yi − π(x′iβ̃)]xij = λ1 sgn(β̃j), β̃j 6= 0, j ≥ 1,∣∣ ∑n

i=1[Yi − π(x′iβ̃)]xij

∣∣ ≤ λ1, β̃j = 0, j ≥ 1.

(18)

Let u = (Y1 − π(x′1β̃), . . . , Yn − π(x′nβ̃))′. By (18), ‖X ′
A1

u‖2
2 = |A1|λ2

1. Thus |A1|λ2
1 =

u′XA1X
′
A1

u ≤ ncmax(|A1|)‖u‖2. Since ‖u‖2
2 ≤ n with probability one, it follows that |A1| ≤

cmax(|A1|)n2/λ2
1. This completes the proof of part (i).

Let εi = Yi − π(x′iβ0) and di = π(x′iβ0)[1− π(x′iβ0)], 1 ≤ i ≤ n. By (5), Taylor expansion

gives

`n(β)− `n(β0) =
n∑

i=1

{1

2
di[x

′
i(β − β0)]

2 − εix
′
i(β − β0)

}
+ Rn(β),

where

|Rn(β)| ≤ 1

24

n∑
i=1

[x′i(β − β0)]
3. (19)

Define

Qn(β) =
1

2

n∑
i=1

di[x
′
i(β − β0)]

2 −
n∑

i=1

εix
′
i(β − β0) + λ1

p∑
j=1

|βj|.

Let β∗n = arg min Qn(β).

Lemma 1 Let A∗ = {j : β∗nj 6= 0}. With probability 1,

|A∗| ≤ M2cmax(|A∗|)n
2

λ2
1

≤ M2cmax(min{n, pn})n
2

λ2
1

,

where M2 > 0 is a finite constant.

This lemma can be proved the same way as Theorem 1, part (i).

Lemma 2 Under conditions of Theorem 1,

‖β∗n − β0‖2
2 ≤

2λ2
1|Ao|

n2c2∗γ2
+ Op

(
log pn

n

qn

c2∗γ2

)
.

Proof. Write

Qn(β) =
1

2
(β − β0)

′X ′DX(β − β0)− ε′X(β − β0) + λ1

p∑
j=1

|βj|.

14



By the definition of β∗n, Qn(β∗n) ≤ Qn(β0). This means

1

2
(β∗n − β0)

′X ′DX(β∗n − β0)− ε′X(β∗n − β0) + λ1‖β∗n‖1 ≤ λ1‖β0‖1,

where ‖ · ‖1 denotes the `1 norm. Thus

1

2
(β∗n − β0)

′X ′DX(β∗n − β0)− ε′X(β∗n − β0) ≤ λ1

∑
j∈Ao

|β∗nj − β0j|. (20)

Let B = Ao ∪ A∗ = {j : β0j 6= 0 or β∗nj 6= 0}, XB = (x0, xj, j ∈ B), β∗nB = (β∗0 , β
∗
nj, j ∈ B),

and β0B = (β0, β0j, j ∈ B). Denote v = D−1/2ε and ηB = D1/2XB(β∗nB − β0B). Since

A∗ ∈ B, the Cauchy-Schwarz inequality implies,

∑
j∈Ao

|β∗nj − β0j| ≤
√
|Ao| ‖β∗nA∗ − β0A∗‖2 ≤

√
|Ao| ‖β∗nB − β0B‖2. (21)

By (20) and (21),

‖ηnB‖2 − 2v′ηB ≤ λ12
√
|Ao| ‖β∗nB − β0B‖2. (22)

Let v∗ be the projection of v to the span of D1/2XB, i.e., v∗ = D1/2XB(X ′
BDXB)−1X ′

BD1/2v.

By the Cauchy-Schwarz inequality,

2|v′ηB| ≤ 2‖v∗‖2 · ‖ηB‖2 ≤ 2‖v∗‖2
2 +

1

2
‖ηB‖2

2. (23)

Combining (22) and (23), ‖ηB‖2
2 ≤ 4‖v∗‖2

2 + 2λ1

√
|Ao| · ‖β∗nB − β0B‖2. Since ‖ηB‖2

2 ≥
nc∗ε0‖β∗nB − β0B‖2

2 and 2ab ≤ a2 + b2,

nc∗ε0‖β∗nB − β0B‖2
2 ≤ 4‖v∗‖2

2 +
(2λ1

√
|Ao|)2

2nc∗ε0

+
1

2
ncn∗ε0‖β∗nB − β0B‖2

2.

It follows that

‖β∗nB − β0B‖2
2 ≤

8‖v∗‖2
2

nc∗ε0

+
4λ2

1|Ao|
n2c2∗ε

2
0

.

Now ‖v∗‖2
2 = ‖(X ′

BDXB)−1/2X ′
BD1/2ε‖2

2 ≤ ‖XBε‖2
2/(4nc∗ε0). We have

max
A:|A|≤qn

‖X ′
Aε‖2

2 = max
A:|A|≤qn

∑
j∈A

|ε′xj|2 ≤ qn max
1≤j≤p

|ε′xj|2.

Since ‖n−1/2xj‖2
2 = 1, 1 ≤ j ≤ p, by the maximal inequality for subgaussian random

variables, max1≤j≤p |ε′xj|2 = n max1≤j≤p |n−1/2ε′xj|2 = Op(n log pn). Therefore,

‖β∗nB − β0B‖2
2 ≤ O(1)

log(pn)

nc2
n∗ε

2
0

+
4λ2

1|Ao|
n2c2

n∗ε
2
0

.

The lemma follows. ¤
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For any subset A ⊂ {1, . . . , pn} and βA = (β0, βj : j ∈ A), write Qn(βA) =

Qn((β′A, 0′p−|A|)
′), where 0p−|A| is a p − |A| dimensional vector of zeros. In Qn(βA), the

columns of X corresponding to the zeros in (β′A, 0′p−|A|)
′ are dropped from the expression.

Similarly define Ln(βA).

Let A = Ao ∪ Ã∪A∗ = {j : β0j 6= 0 or β̃nj 6= 0 or β∗nj 6= 0}. Since β̃ = (β̃′nA, 0′p−|A|)
′ and

β∗n = (β∗
′

nA, 0′p−|A|)
′ minimize Ln(β) and Qn(β), respectively, we have

β̃nA = arg min Ln(βA, λ1) and β∗nA = arg min Qn(βA, λ1).

Lemma 3 Define Λn(δ, A) = inf‖βA−β∗nA‖2=δ Qn(βA; λ1)−Qn(β∗nA; λ1). Under the conditions

of Theorem 1,

Λn(δ, A) ≥ nc∗ε0δ
2. (24)

Proof of Lemma 3. Define ν(β) = (0, ν(βj), j ∈ A)′ where ν(βj) is a subdifferential of

|βj|. That is, ν(βj) = 1 if βj > 0, ν(βj) = −1 if βj < 0, and −1 ≤ ν(βj) ≤ 1 if βj = 0. Let

ΣA = n−1X ′
ADXA. Since Qn(βA) is minimized at β∗nA, there is a subdifferential of Qn at β∗nA

that satisfies dQn(β∗nA; λ1) = nΣA(β∗nA − β0A) + X ′
Aε + λ1ν(β∗nA) = 0. By the property of a

subdifferential, ‖βA‖1 − ‖β∗nA‖1 ≥
∑

j∈A ν(β∗nj)(βj − β∗nj). Therefore,

Qn(βA; λ1)−Qn(β∗nA; λ1) ≥ n(βA − β∗nA)′ΣnA(βA − β∗nA) + n(βA − β∗nA)′dQn(β∗nA).

It follows that Qn(βA; λ1)−Qn(β∗nA; λ1) ≥ n(βA − β∗nA)′ΣnA(βA − β∗nA). The lemma follows

from (A2). ¤
The following lemma from Hjort and Pollard (1993) concerning convex minimization will

be useful.

Lemma 4 (Hjort and Pollard 1993) Suppose An(s) is a convex function in IRp and is

approximated by Bn(s). Let an = arg min An(s) and assume that Bn has a unique argmin

bn. Then for each δ > 0, P
(‖an − bn‖ ≥ δ

) ≤ P
(
∆n(δ) ≥ Λn(δ)/2

)
, where

∆n(δ) = sup
‖s−bn‖≤δ

|An(s)−Bn(s)| and Λn(δ) = inf
‖s−bn‖=δ

Bn(s)−Bn(bn).

Here ‖ · ‖ can be any norm in IRp.

Proof of Theorem 1, part (ii). For any δ > 0, define ∆n(δ, A) = sup‖βA−β∗nA‖2≤δ |Rn(βA)|.
Let Λn(δ, A) be as defined in Lemma 3. By Proposition 4,

P
(|β̃nA − β∗nA‖2 ≥ δ

) ≤ P
(
∆n(δ, A) ≥ Λn(δ, A)/2

)
.

By Lemma 3, Λn(δ, A) ≥ nc∗ε0δ
2. Therefore,

P
(|β̃nA − β∗nA‖2 ≥ δ

) ≤ P
(
∆n(δ, A) ≥ nc∗γδ2/2

)
. (25)
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By Lemma 2, ‖β∗nA − β0‖ = Op(hn). When ‖βA − β∗nA‖2 ≤ δ, we have ‖βA − β0‖2 ≤
δ + ‖β∗nA − β0‖2. Thus ∆n(δ) ≤ sup

{|Rn(βA)| : ‖βA − β0‖2 ≤ δ + ‖β∗nA − β0‖
}
. When

‖βA− β0‖2 ≤ δ + ‖β∗nA− β0‖2, by (19), |Rn(βA)| ≤ O(1)
∑n

i=1[(βA− β0)
′xiAx′iA(βA− β0)]

3/2.

By condition (A1), max1≤i≤n ‖xiA‖ ≤ q
1/2
n M1. This in turn implies

∆n(δ, A) ≤ nc∗[δ + Op(hn)]3q1/2
n M1,

where hn is defined in (6). By (25), it follows that

P
(|β̃nA − β∗nA‖2 ≥ δ

) ≤ P
(
nc∗[δ + Op(hn)]3q1/2

n M1 ≥ c∗δ2/2
)
. (26)

For any δ that satisfies δ = o(hn) and (δ + hn)3q
1/2
n /δ2 → 0, the right-hand side of (26)

goes to zero and β̃nA−β∗nA = op(hn). Therefore, β̃nA−β0 = β̃nA−β∗nA +β∗nA−β0 = Op(hn).

In particular, we can choose δn = hn/ log1/4 n. Then the required condition on hn and qn is

h3
nq

1/2
n

(hn/
√

log n)2
= hn(qn log n)1/2 → 0.

This completes the proof of Theorem 1. ¤
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Table 1: Simulation study. Nonzero: median number of nonzero estimates. True: median of

true positives. Numbers in “()” are inter-quartile ranges. The number of nonzero coefficients

in the generating model is 20.

Lasso Proposed

n µ ρ Nonzero True Nonzero True

100 1 0 34 (30,38) 15 (14,17) 24 (20,27) 14 (13,16)

200 1 0 46 (39,50) 19 (18,20) 33 (30,36) 18 (18,19)

100 1 0.3 35 (31,39) 14 (13,16) 24 (21,27) 13 (12,15)

200 1 0.3 45 (42,50) 17 (17,18) 33 (30,36) 17 (16,18)

100 1 0.5 35 (30,39) 13 (12,15) 24 (20,26) 13 (12,14)

200 1 0.5 48 (43,51) 16 (16,17) 31 (26,33) 16 (15,17)

100 0.5 0 42 (39,45) 17 (17,18) 29 (27,31) 16 (14,17)

200 0.5 0 60 (53,68) 20 (19,20) 40 (35,43) 19 (18,19)

100 0.5 0.3 42 (36,45) 16 (14,17) 29 (25,31) 14 (12,15)

200 0.5 0.3 69 (58,75) 18 (17,19) 40 (35,45) 17 (17,18)

100 0.5 0.5 41 (34,47) 13 (11,14) 25 (20,28) 11 (10,13)

200 0.5 0.5 51 (45,54) 16 (15,17) 35 (32,38) 15 (13,16)
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Table 2: Analysis of Breast Cancer Data: Systematic names of identified genes; Estimates

using Lasso and the proposed approach.

Systematics Name Lasso Proposed Systematics Name Lasso Proposed

NM 003009 0.049 0 Contig64940 RC -0.200 -0.320

NM 000936 -0.021 0 Contig20866 RC 0.035 0

AB033113 -0.265 -0.103 NM 004962 0.636 1.880

Contig52994 RC -0.225 0 NM 006465 0.180 0

NM 002494 0.038 0.046 NM 007235 0.068 0.039

AL133018 -0.200 -0.125 NM 006574 0.186 0.180

U89715 0.019 0 D86979 0.513 0.089

Contig44278 RC -0.196 0 Contig35655 RC 0.620 1.078

Contig38907 RC 0.322 0 NM 014713 -0.025 -0.027

NM 012104 0.027 0 Contig33778 RC 0.020 0.003

NM 002749 -0.051 -0.040 Contig22842 RC -0.042 0

NM 002789 -0.150 -0.073 AB037823 -0.477 -0.029

NM 020307 -0.028 -0.009 X61070 0.449 0

AB040924 0.336 0 NM 015846 -0.021 0

AB032989 0.146 0 NM 018010 0.083 0.059

Contig60950 -0.230 0 NM 000076 -0.135 0

Contig31018 RC -0.026 0 Contig40751 RC 0.255 0.345

Contig15795 RC -0.190 -0.177 Contig59553 -0.072 -0.027

NM 003885 0.257 0 Contig13678 RC 0.050 0

Contig719 RC 0.087 0.025 Contig26520 RC -0.060 -0.043

NM 020682 0.307 0.040 AL157449 0.060 0
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